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Abstract

Frequency modulated (FM) sweeps are common in species-specific vocalizations,

including human speech. Auditory neurons selective for the direction and rate of

frequency change in FM sweeps are present across species, but the synaptic

mechanisms underlying such selectivity are only beginning to be understood. Even

less is known about mechanisms of experience-dependent changes in FM sweep

selectivity. We present three network models of synaptic mechanisms of FM sweep

direction and rate selectivity that explains experimental data: (1) The ‘facilitation’

model contains frequency selective cells operating as coincidence detectors,

summing up multiple excitatory inputs with different time delays. (2) The ‘duration

tuned’ model depends on interactions between delayed excitation and early

inhibition. The strength of delayed excitation determines the preferred duration.

Inhibitory rebound can reinforce the delayed excitation. (3) The ‘inhibitory sideband’

model uses frequency selective inputs to a network of excitatory and inhibitory

cells. The strength and asymmetry of these connections results in neurons

responsive to sweeps in a single direction of sufficient sweep rate. Variations of

these properties, can explain the diversity of rate-dependent direction selectivity

seen across species. We show that the inhibitory sideband model can be trained

using spike timing dependent plasticity (STDP) to develop direction selectivity from

a non-selective network. These models provide a means to compare the proposed

synaptic and spectrotemporal mechanisms of FM sweep processing and can be

utilized to explore cellular mechanisms underlying experience- or training-

dependent changes in spectrotemporal processing across animal models. Given

the analogy between FM sweeps and visual motion, these models can serve a

broader function in studying stimulus movement across sensory epithelia.
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Introduction

A frequency modulated (FM) sweep is an auditory version of a broad class of

sensory inputs generated by stimulus motion across the sensory epithelium. FM

sweeps are common in animal vocalizations including human speech. FM sweeps

are important in speech discrimination [1, 2, 3] and deterioration of FM detection

with presbycusis is correlated with speech recognition deficits [4, 5]. As found in

the visual and somatosensory systems, auditory system neurons are selective for

the rate (speed) and/or direction of such motion. A broad range of FM sweep

rate-dependent direction selectivity is found across animal species [6] [7]

[8, 9, 10, 11], but the synaptic/network properties that generate this diversity in

spectrotemporal processing are unclear. The development of FM sweep selectivity

is experience-dependent [12], but the plasticity mechanisms are unknown. To

address these issues, we developed network models of three synaptic mechanisms

that explain experimental data (reviewed in [13]), and explored plasticity

mechanisms responsible for development of direction selectivity.

The first mechanism is asymmetric sideband inhibition [14, 15, 16]. The timing

and strength of sideband inhibition relative to excitation shapes FM sweep

selectivity [9, 17, 18, 19, 20]. A second mechanism for FM sweep selectivity is

facilitation [21, 22]. Individual cells receive sub-threshold excitation from two

tones of different frequencies. Direction/rate selectivity emerges because only one

sequence of tones generates the appropriate coincidence that is necessary for spike

generation. The third mechanism is duration tuning for tones. Duration tuning

predicts FM rate selectivity [23, 24]. Coincidence of a rebound from inhibition

and a delayed excitation underlie duration tuning in this model [25]. Alternate

models that do not depend on a coincidence mechanism have also been proposed

[26]. Here we use a network model to evaluate the synaptic properties that cause a

dependence on coincidence mechanisms. Different brain regions may utilize each

of these mechanisms separately or combine them for efficient spectrotemporal

processing. The main goal of this study was to implement and compare these

mechanisms in biologically feasible network settings.

These models serve to test theories that explain changes in spectrotemporal

processing due to formal training [27] or developmental experience [21].

Although development of FM sweep selectivity is experience-dependent, the

underlying synaptic mechanisms of plasticity are not known [21]. STDP

mechanisms have been proposed to underlie experience-dependent plasticity of

visual motion selectivity in the optic tectum [28]. Repeated presentation of a

motion direction caused neurons to develop direction selectivity. This was shown

to be dependent on the velocity of movement and STDP. While it has been

proposed that STDP shapes the development of FM sweep selectivity [21], it is

unclear what network parameters underlie such plasticity. Therefore, the second

goal of this study was to determine if and how STDP shapes experience-dependent

changes in FM sweep direction selectivity.
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Results

Sideband inhibition

Auditory neuron receptive fields contain excitatory and inhibitory components

that are approximately spectrally balanced [29, 30]. The layout of the model that

captures the spectral balance is shown in Fig. 1A. A number of consecutive

frequency sensitive input cells send excitatory input to an inhibitory cell and an

output cell. Each input cell responds to a particular frequency; therefore, a sweep

leads to sequential activation of the input cells. The inhibitory cell provides feed-

forward inhibition to the output cell [31]. Thus, the output cell requires several

(arriving close in time) excitatory inputs to spike. Sweeps of sufficiently fast rate

lead to summation of excitatory inputs in the output cell making it fire before the

inhibitory cell could prevent the response. Although the excitation to the

inhibitory cells was generally stronger [32], their route to the output cells was one

synapse longer allowing the output cell to receive sufficient excitation before

inhibition could prevent cell firing.

In the model, as a sweep activated successive tone-selective cells, these cells

begin to excite the inhibitory cell. As there are direct excitatory connections from

the input cells to the output cells the excitation arrived faster than the inhibition.

For fast sweeps this resulted in an output cell that was well on its way to spiking

before inhibition arrived. On the other hand, for sweeps slower than a threshold

sweep rate, feed-forward inhibitory input reached the output cell before it

received enough excitatory inputs from the input neurons to spike. Therefore,

inhibition would prevent spiking.

Any output cell that responded to a given sweep rate would also respond to

sweeps faster than that, giving rise to the ‘fast-pass’ type rate selectivity function

[33]. In this model, output cells could be made responsive to a narrower range of

sweep rates by increasing excitatory input to inhibitory cells (Fig. 1C). Thus,

output cells receiving strongest inhibition would respond only to the fastest

sweeps in a given set and therefore will be tuned to a narrow range of sweep rates

(Fig. 1D). In contrast, the cells that received weakest inhibitory input would be

less selective and would respond to a broader range of sweeps (Fig. 1C, Fig. 1D).

Thus, by adjusting the excitatory input strength upon inhibitory neurons, a broad

range of rate selectivity functions can be generated. Maximum excitation of three

output cells is shown in Fig. 1B (to illustrate the temporal profile of the response,

the cells were prevented from spiking). The least selective cells always respond

more strongly than the more selective ones regardless of sweep rate. The

maximum excitation was asymmetrical due to asymmetry in the strength of

connections from the input cells to the inhibitory cell.

In general, this model would respond to sweeps of both directions, however,

direction preference is introduced by implementing asymmetry of synaptic

strengths in the connections from the input cells to the inhibitory cells [9, 20]. The

asymmetry was calculated by subtracting the distance weighted average of synaptic

strength of connections from the input cells to the inhibitory cells on one side of

the central tone-responsive input cell from those on the other side.
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Fig. 1. Sideband inhibition mechanism of FM sweep detection. A) Network layout. This model uses asymmetric inhibitory sidebands to differentiate
between sweeps of different rates and directions. This network is sensitive to sweeps in preferred direction that are of the target rate or faster resulting in so-
called ‘Fast-pass’ rate selective neurons. Excitation is in blue; inhibition is in red. Sweep rate selectivity is dependent upon the strength of synaptic inputs to
the inhibitory layer. Direction selectivity depends on the asymmetry of these inputs A sweep of sufficient speed will excite the output cell to fire before the
inhibitory interneuron can suppress the output. Although the excitation to the inhibitory cells is generally stronger their route to the output cells is one
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ASY~
X

S � (CX{CXM)

Where ASY is asymmetry, S is synaptic strength, CX is the position of an input cell

that sends a connection to the inhibitory cell and CXM is the position of the input

cell in the center of those that send connections to the inhibitory cell.

When this factor was set to zero, all connections from the cells that responded

to the low frequency range (the cells on the left in the Fig. 1A) were of the same

strength as those from the high frequency range (the cells on the right in the

Fig. 1A). Under this condition the network had no direction preference. When the

asymmetry was non-zero, the synaptic strength of inputs from the cells responsive

to one end of the frequency spectrum was higher than those from the other end.

To quantify this, we introduced direction selectivity index (DSI) as a measure of

how strongly the network prefers sweeps in one direction over the other. It is

defined by the number of sweeps the network responds to inputs in one direction

subtracted from the number of sweeps responded to the inputs in the other

direction and divided by the total number of sweeps it responded to.

DSI~
SU{SD

SUzSD

Where SU is the number of upward sweeps the network responds to SD is the

number of downward sweeps the network responds to.

Fig. 1E shows that DSI increases with the asymmetry in the network. Thus,

manipulation of two properties of this network, asymmetry (Fig. 1E) and strength

of input to the inhibitory cells (Fig. 1D), can generate a broad range of rate-

dependent direction selectivity functions. Importantly, this also indicates that

measures of direction selectivity in experiments must be taken at different sweep

rates.

Fig. 2 shows the response of the output cell to individual sweeps. It illustrates

that for slow sweeps, the inhibitory cells fired before sufficient number of

excitatory inputs triggered an output cell response (Fig. 2A, left). For sweeps of

sufficient rate the inhibitory cell spiked too late to prevent output spike (Fig. 2A,

middle). Direction selectivity in this model was determined by asymmetry in the

strength of connections from the input layer to the inhibitory layer. The network

was less sensitive to sweeps coming from the direction that contained stronger

synapse longer allowing the output cell to receive sufficient excitation before inhibition can prevent cell firing. B) The level of excitation in output cells in
response to sweeps of various rates. Spikes are prevented to show depolarization. The green line represents the least sensitive cell (cell 10). As these lines
do not cross there is no sweep rate which will evoke a response in the cell represented by the green line that does not also evoke a response in the cells
represented by the other two lines. The X-axis shows sweep rate in cells per second in an arbitrarily chosen positive direction. Negative sweep rates
represent sweeps in the other direction. ‘Inf’ indicates all input cells fire simultaneously. C) This two dimensional plot shows maximum excitation of 10 output
cells in response to a full range of sweep rates. Sweep rates are varied across the x-axis with each output cell arranged along the y-axis. Color indicates
maximum excitation during the sweep while spikes are presented in deep red. The asymmetry or the response of the network is directly related to the
asymmetry of the strength of connections from the input layer to the inhibitory layer. D) This shows range of sweep rates a given output cell responds to as a
function of the mean strength of connections from the input layer to the inhibitory cell. The range is measured by the number of sweep rates that evoke a
response out of the total test set. Dots represent individual trials with various Asymmetry coefficients. E) Direction Selectivity Index (DSI) is shown in
comparison to the degree of asymmetry of the strengths of connections from the input cells to the inhibitory cell.

doi:10.1371/journal.pone.0115196.g001
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connections to the inhibitory cells. Therefore, even for fast sweeps in non-

preferred direction, the inhibitory cell could fire early enough to prevent spiking

in the output neuron (Fig. 2A, right).

Fig. 2. Sideband inhibition network response to a variety of sweeps. A) Voltage traces of an output cell in response to a variety of sweep rates. The cells
firing threshold is shown as a dotted blue line. The lower traces indicate spikes of all input cells (bottom) the shown output cell (middle) and the inhibitory
interneuron (upper). During sweeps of non-preferred rates the network goes above normal spiking threshold and is only prevented from spiking by inhibition.
B). A raster plot of output cell excitation over time for cells with different preferred sweep rates for 6 different sweeps. The cells depolarization is represented
by color. Cells are arranged along the y-axis time is represented on the X-axis. Each frame represents the output cells’ response to a single sweep with the
sweep rate indicated above each panel. The lower numbered cells are responsive to a broader range extending to progressively slower sweeps. In the
slowest sweep no cells fire in response to the input (shown by the deepest red). Faster sweeps cause progressively more cells to fire until the sweep at
333 cells/second elicits spikes in all of the output cells. Comparing this to Fig. 5B we can see that this mechanism operates within much shorter timescales
than coincidence detection.

doi:10.1371/journal.pone.0115196.g002
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To illustrate response of an ensemble of neurons, Fig. 2B presents responses of

10 different cells (each cell could belong, e.g., to a different network like that

illustrated in Fig. 1A), each tuned to a different sweep rate range, as a heat chart.

The difference in tuning properties was achieved by adjusting the excitatory input

strength upon inhibitory neurons. Six sweeps of different rates were tested; the

color represents the excitation of the cell at a particular time. Blue indicates the

resting state with dark red representing a spike. The sweep of the slowest rate

triggered response only in a cell from the circuit with broadest tuning profile. All

neurons spiked in response to the fastest sweep rate.

STDP shapes direction selectivity in the sideband inhibition model

In order to explore how this system might develop direction selectivity in vivo,

STDP rules were instituted in a series of initially symmetrical networks. STDP was

introduced to the excitatory connection from the input layer to the inhibitory

layer. This STDP mechanism included the balancing of incoming connections for

all cells so that total incoming synaptic strength remained constant. When the

network was presented with repeated sweeps in a single direction the networks

became selective for sweeps in that direction (Fig. 3). As shown in Fig. 3A over

the course of training the profile of responses changes for all cells though the least

selective cells are affected the most. It was found that over the course of repeated

exposure to sweeps of a given direction, the coefficient of asymmetry increased

(by absolute value) along with the DSI (Fig. 3B). Small changes in synaptic

asymmetry were able to cause large changes in DSI. Asymmetry continued to

increase until the inhibitory cell began to spike before the last input cell at which

point the order of STDP was reversed for that cell and asymmetry was reduced.

DSI, experiencing a ceiling effect, was not affected by the reduction in synaptic

asymmetry.

Facilitation model

This model is based on the finding that a neuron’s spiking response to individual

tones is poor or absent, but FM sweep response is robust [21]. When two tones

are presented in an appropriately delayed sequence, the spiking response is

significantly stronger than the sum of response to individual tones [21, 22, 34].

Direction selectivity for upward sweeps will emerge if an ascending, but not

descending, tone sequence produces facilitation. Rate-dependent response will

emerge if only specific delays between tones produce facilitation (see Methods).

The network structure is shown schematically in Fig. 4A. As with the sideband

model, it contains an input layer with a series of frequency selective cells. Each cell

in the output layer received input from cells sensitive to two different frequencies.

The synaptic connections from the input cells had different delays. The output

cells responded only if the delay between the spike times of two input cells was

within a summation sensitive window to compensate for the difference in synaptic

delays. As a sweep moved from one frequency to another it activated one tone-

Network Models of Frequency Modulated Sweep Detection

PLOS ONE | DOI:10.1371/journal.pone.0115196 December 16, 2014 7 / 25



selective input cell at a time. When the sweep had a ‘‘correct’’ rate and direction,

the slow synapse was activated before the fast synapse and the difference in spike

times was the same as the difference between the two delays. It led to summation

of inputs and triggered response in the output cells. For simplicity, fast and slow

connections have been implemented to be of equal strength though this is not

necessary for the functionality of the detector.

This model can be tuned to the sweeps of different rate by changing difference

in synaptic delay between neighboring cells. Fig. 4B shows three output cells from

different networks (with different combination of delays) each tuned to particular

sweep rate. To estimate the maximum excitation achieved by the output cells in

response to sweeps of various rates, spike generation was blocked in the output

cells. The maximum excitation is a smooth symmetrical curve that peaks at the

Fig. 3. Output response of sideband inhibition model. A) Maximum depolarization state attained in the output cells in response to sweeps of a given rate
before and after training with sweeps of a single rate in the preferred direction. Shows the development of asymmetry of response properties due to the
effects of STDP learning. B) DSI shown in blue compared to asymmetry index shown in red. As the network is trained by repeated exposure to sweeps of the
same rate. Asymmetry index is arbitrarily scaled.

doi:10.1371/journal.pone.0115196.g003
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cells’ preferred sweep rate. Fig. 4C shows output cell response (heat chart) as a

function of the sweep rate (X-axis) and synaptic delays (Y-axis). In this figure,

spiking is not prevented and as such ‘red’ indicates spiking. Each sweep rate

triggered response in the output cell only for one specific combination of delays.

Furthermore, in contrast to sideband inhibition model, sweeps that were faster

Fig. 4. Coincidence-based mechanism of FM sweep detection. This mechanism is also described as the ‘facilitation’ mechanism in the literature [21, 68].
A) Network layout. The input layer (‘i’) represents an array of frequency sensitive cells in a tonotopic organization. The output cells (‘o’) will respond only if
the delay between the activation the input cells is of the correct duration to compensate for their different synaptic delays. Sweep direction is shown by the
black arrow. The thick blue arrows represent synaptic connections with short delays while the thin blue arrows represent synapses with longer delays. B)
The maximum level of excitation achieved by output cells during a sweep as a function of delay between inputs being received by any two neighboring cells
(this is inversely proportional to sweep rate). Networks tuned to different best sweep rates are shown in different colors. Here, spikes have been prevented to
show excitation. Rates are shown in terms of the number of tonotopic cells stimulated in a second in a given direction. If all cells are stimulated
simultaneously the rate is infinite. A negative rate indicates the cells being stimulated in the opposite direction. C) This two dimensional plot shows maximum
excitation of 10 output cells in response to a full range of sweep rates. Sweep rates are varied along the x-axis with each output cell arranged along the y-
axis. Color indicates maximum excitation during the sweep with spikes represented in deep red.

doi:10.1371/journal.pone.0115196.g004
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than preferred rate did not trigger a response, and this model generates ‘band-

pass’ type rate selective functions [33].

Fig. 5 shows the response of different coincidence detecting cells to individual

sweeps as a function of time. In Fig. 5A the first sweep (left panel) was too slow to

trigger response. The next sweep (middle panel) was of the preferred rate and

triggered spiking. Finally, the last sweep (right panel) had a wrong direction and

produced no response. Fig. 5B shows the responses of 10 cells from different

networks (each tuned to different preferred rate using different synaptic delays) as

a heat chart. In this figure it can be seen that each cell responds to a sweep of its

Fig. 5. Coincidence detection network response to a variety of sweeps. A) Voltage traces of an output cell in response to a variety of sweep rates. The
cells firing threshold is shown in blue. The red and purple traces below show the timing of spikes in the two presynaptic input cells. B) A raster plot of output
cell excitation over time for cells with different preferred sweep rates. The cells’ depolarization is represented by color. Output cells are arranged along the y-
axis by preferred sweep rate. Time is represented along the y-axis. Each frame represents the response to a single sweep with a specific rate. The higher
numbered cells are responsive to faster sweeps. ‘INF’ indicates simultaneous activation of all input cells.

doi:10.1371/journal.pone.0115196.g005
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preferred rate in a very similar way that other cells respond to sweeps of their own

respective preferred rate. This model presents an intuitive and reliable relationship

between synaptic delay and preferred sweep rate. Preferred sweep rate was

inversely proportional to the difference in synaptic delay of the outgoing

connections from the tone-selective neurons (layer 1) to the output coincidence

detection neurons (layer 2). This minimal model, using two layers of cells, can

reliably encode rate and direction selectivity.

Duration tuning

Duration tuned neurons are those that respond to a narrow range of tone

durations, and are found across auditory regions and species. Duration tuning

predicts FM sweep rate selectivity in both bats and mice [23, 24] on the basis that

sweep rate will dictate how long a sound spends at each frequency in a sweep. This

mechanism does not influence direction selectivity.

Published models of duration tuning depend on a tone onset driven early

inhibition that lasts the duration of the tone and is followed by delayed excitation

[25, 26]. The network implemented here uses these two components and consists

of an input layer of tone-sensitive cells that fired a continuous train of spikes that

lasted the input duration. Each input cell provides a strong excitatory input to a

single middle layer inhibitory cell and a weak excitatory input to a middle layer

excitatory cell. Inhibitory cells spiked with a similar spike rate and duration as the

input cell and provided, with a delay, feed-forward inhibitory signal to the output

cell. In contrast, the excitatory cell required many inputs to reach spike threshold

and then provided excitatory input to the output cell (Fig. 6A). This results in an

early onset-driven inhibition that lasts the duration of the tone and a delayed

onset-driven excitation [25, 26]. When the input cell was activated for a duration

within its preferred range, the output cell received excitatory input from the

middle layer right after it stopped receiving inhibition. If this excitation exceeds

threshold, spiking will occur. This will generate onset-dependent short-pass

duration tuning functions for tones as predicted by the ‘anti-coincidence’ model

of duration tuning [26]. In this model changing strength of the input to the

middle layer excitatory cell would affect how long it takes to trigger spike in this

cell and therefore will affect duration tuning of the circuit. Maximum excitation

of the output cells from different circuits (with different strength of the input to

excitatory neuron) is shown in Figs. 6B and 6C. In Fig. 6B the responses of 3

output cells are shown with spikes blocked. Each cell response showed a sharp

peak for the preferred input duration (number of input spikes).

If the weak excitation does not reach threshold even if it is outside the window

of early-onset inhibition, then a coincidence with a rebound from the inhibition

may increase spiking probability (Fig. 7A, middle). This will lead to tone offset-

dependent duration tuning as predicted by the ‘coincidence’ model of duration

tuning [25]. When the input lasted too long, the inhibition was still present when

the middle layer excitatory cell spiked. The inhibition cancelled this excitatory

input and there was no response in the output cell (Fig. 7A, right). Finally, when
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the input duration was too short, the middle layer excitatory cell did not receive

enough input to reach spike threshold (Fig. 7A, left). Thus the model explains two

different hypotheses of tone duration tuning in the literature.

Fig. 7B shows the response of 10 output cells from different circuits (tuned to

different durations) as a heat chart. Unlike the similar figures from the previous 2

Fig. 6. Duration tuning model mechanism of FM sweep detection. A) Cells of the output layer respond selectively to sweeps of a given duration of spike
train fired by its respective input cell. Weak excitation is in pale blue; strong excitation is in dark blue. Inhibition is in red. Input to this network is in the form of
spike trains that last the duration of the tone. The weight of the strong excitatory connection to the inhibitory cell is such that the inhibitory cell will fire roughly
the same number of spikes over a similar duration as the input cell. The weak connection to the output cell is such that it will take a given number of input
spikes before reaching threshold. The stage two excitatory cells connection to the output can be either sub threshold and require inhibitory rebound to reach
threshold or supra-threshold. B) The maximum level of excitation achieved by output cells during a sweep as a function of input duration with spikes
prevented to show maximum depolarization. C) This two dimensional plot shows maximum excitation of 10 output cells in response to a full range of input
durations. Number of spikes is labeled across the x axis. Color indicates maximum excitation during stimulus presentation, While spikes are presented in
deep red.

doi:10.1371/journal.pone.0115196.g006
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models, here the inhibition triggers hyperpolarization that can be seen in dark

blue starting significantly before the any of the output cells fire. Each neuron

responded to a particular duration only. In this model, the sweep duration to

which a given network is tuned was controlled by the strength of the excitatory

connection from the input layer to the excitatory middle layer. The stronger this

connection, the shorter the duration of the input triggering the network response.

In natural environment, this would cause the network to respond to faster sweeps.

Fig. 7. Duration tuned network response to a variety of sweeps. A) Cell traces of inputs one spike less than preferred duration (left), the preferred
duration (mid) and one spike more than the preferred duration (right). The number of spikes reflects the tone duration. B) Raster plot of duration tuned output
cells tuned to different durations (shortest preferred duration at top). The cells depolarization is represented by color. Cells are arranged along the y axis.
Each frame represents the response to a single sweep of a different rate but similar bandwidth (thus a different duration of tone).

doi:10.1371/journal.pone.0115196.g007
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Discussion

In this study we modeled mechanisms of FM sweep selectivity and identified

network properties that may underlie the range of rate-dependent direction

selectivity across species. In addition, we compared selectivity properties of these

models and showed that STDP can shape selectivity in the sideband inhibition

mechanism. The network models presented in our study are minimal sufficient

networks to reproduce the main properties of FM mechanisms observed in vivo.

The existence of all of these mechanisms in some species simultaneously indicates

that each one likely possesses situational advantages over the others. Some of these

advantages may be inferred from our study.

The facilitation mechanism is by far the simplest as it only requires 3 cells to

create a circuit responsive to a single sweep rate and direction. It is, however

dependent on the rate of synaptic decay to differentiate one sweep from another

leading to trade off between specificity and response time that does not afflict the

side band inhibition mechanism. There is also no obvious means to train this

mechanism through synaptic plasticity as it depends upon differences in synaptic

delay rather that synaptic strength. The sideband inhibition model is limited to

fast pass selectivity unless additional layers of processing are available. The other

two models do not contend with this issue. Sideband inhibition is also the most

sophisticated of the mechanisms requiring the most frequencies of input, the most

overall cells and precise timing of both excitation and inhibition. Primary

advantage of duration selectivity mechanism over the others is its ability to

estimate sweep rate without comparing the timing of multiple frequencies. It is

however much slower than the other mechanisms and requires input in the form

of spike trains.

Sideband inhibition model

FM sweep rate and direction selectivity can be produced by the spectral and

temporal interactions between excitation and sideband inhibition

[9, 24, 35, 36, 37]. Our study shows that the diversity of rate-dependent direction

selectivity functions observed across species can be explained by changes in two

properties of the auditory neuron receptive field: strength of excitatory input to

inhibitory neurons that generate sidebands and the spectral asymmetry of these inputs

(Fig. 8). Variation along the abscissa generates differences in asymmetry and

therefore generates differences in direction selectivity. Variation along the

ordinate generates differences in relative strength of excitation and inhibition that

may lead to the changes in relative timing of excitatory and inhibitory inputs to

the output cell [17, 19] and, therefore, generates different ranges of sweep rates to

which a neuron responds.

If the variation along the abscissa in Fig. 8 is related to tonotopy, this model

explains the observed topography of FM direction selectivity in the rat auditory

cortex in which low-frequency neurons preferred downward sweeps and high-

frequency neurons preferred upward sweeps [20]. In the pallid bat cortex and
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inferior colliculus (IC), most neurons are selective for the downward FM sweeps

used in echolocation [9, 38]. Analysis of timing of sideband inhibition in the

cortex and IC showed that the high-frequency inhibition arrived later compared

to low-frequency inhibition [9, 23]. This may also be due to the fact that the

strength of high-frequency inhibition is lower compared to low-frequency

inhibition as suggested by our model.

While we do not propose a complete model for the development of sideband

inhibition based sweep detector, our study suggests that development of direction

selectivity from non direction selective networks can be explained by STDP.

Provided STDP has the largest impact on the connections from the input cells to

the inhibitory cells, the network will prefer whatever sweeps it is exposed to most

often. We found that to achieve successful training, STDP based plasticity

required balancing of synaptic inputs such that the total synaptic strength per cell

remained constant over the training. Total weight of synaptic inputs to a neuron

could be conserved by local balancing of potentiation and depression [39] or by

induction of heterosynaptic plasticity [40, 41, 42, 43, 44]. A similar model of

direction selectivity in the ferret visual cortex has also come to the conclusion that

synaptic competition is an essential component to obtain direction selectivity

through synaptic plasticity [45].

Our model predictions are in agreement with experimental data obtained from

the pallid bat cortex. At the onset of hearing most neurons are non-selective for

sweep direction. During early development, the bat is likely exposed to

echolocation calls within the colony. These are downward FM sweeps.

Communication calls have upward sweeps, but are typically of slower rates or

have different spectral bandwidths. The increased exposure to downward sweeps,

through STDP, may increase the asymmetry (abscissa in Fig. 8) to favor responses

to downward sweeps. Experimental data indeed show that during development

Fig. 8. Schematic excitatory and inhibitory components of an auditory neuron frequency receptive
field in a network with inhibitory sidebands. Variations in two properties, ‘asymmetry’ and ‘inhibition
strength’, can explain the broad range of FM sweep rate-dependent direction selectivity observed across
species. See text for additional details.

doi:10.1371/journal.pone.0115196.g008
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low-frequency sideband inhibition arrives faster than high-frequency sideband

[37] in an echolocation experience-dependent manner [12]. This is likely due to

low-frequency sideband becoming stronger [19].

Several advantages of the sideband mechanism are apparent from the modeling

results. This mechanism shows shorter response times than facilitation model. It

was also less sensitive to small changes in synaptic strength when compared to

facilitation mechanism. The most prominent disadvantage of the sideband

mechanism is that it responds to a range of sweeps (fast-pass type selectivity

functions). This can be corrected however by an additional layer of processing

which subtracts the response of one network from another. An additional

disadvantage to this mechanism is that it requires a broader range of frequencies

in order to detect sweep rate. This creates problems with making the network

capable of detecting properties of narrow bandwidth sweeps and in identifying

sweep rate independent of sweep duration or starting frequency. Although the

network described here can only produce a ‘fast pass’ filter that is capable of

telling if a sweep is faster than a given rate, combining the outputs of several

different networks tuned to slightly different sweep rates would allow creation of a

‘band pass’ network that only respond to a narrow range of sweep rates.

Facilitation model

Facilitation (or coincidence detection) mechanism relies on differences in synaptic

delay to derive sweep rate specificity. It is selective for both sweep rate and

direction and responds only to a sweep within a narrow range of preferred rates.

Only two inputs are required for any given detector cell and as such a tonotopic

organization may not be necessary to form this detector. All that is required are

cells that are responsive to a variety of tones. In a noiseless system the range of

sweep rates that a given set of output cells would respond to can be made

arbitrarily small.

This model has not been used previously to represent FM sweep processing,

though models similar to this has been used to represent a sound localization

system [46, 47] by detecting interaural time differences. The primary difference

was that the inputs in the sound localization models represented the two ears

rather than separate tones. As coincidence detection depended in part on decay of

synaptic inputs to differentiate between sweeps, the time required to process a

given input in this model was significantly longer (still ,100 msec) than it was for

the sideband inhibition model. Compared to the facilitation model, which could

generate band-pass type (Gaussian) response functions, the sideband inhibition

mechanism could only explain fast-pass (sigmoidal) FM rate selectivity without

additional layers of processing.

It is very likely that a trade-off exists between selectivity for sweep rate and

response time. As a network is made responsive to a wider range of sweeps by

increasing the synaptic strength of the connection from the input cell, response

times are likely to be reduced. The most likely cause of differences in synaptic
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delay is a difference in the placement of synapses upon the dendritic arbor; more

distal synapses will take more time to carry signals on to the soma of the cell [48].

Duration tuning

Two different models (coincidence and anti-coincidence based models) have been

proposed to explain tone duration tuning. Common to both models is the

presence of an early tone onset-driven IPSP and a delayed tone-onset driven

EPSP. The early IPSP lasts the duration of the tone. The coincidence model posits

that the EPSP is subthreshold and at the preferred duration, the rebound at the

offset from inhibition will coincide with the EPSP to increase spiking. By

definition, this mechanism will generate spikes that are tied to tone offset and

such neurons are present in the IC. However, duration tuned neurons in which

response is tied to tone onset are also present [23, 24, 26]. This can be explained by

the anti-coincidence model that posits that the delayed EPSP is supra-threshold,

and for short duration tones, the IPSP is over before the EPSP arrives. This will

generate spikes. For long duration tones, the IPSP is still present when the EPSP

arrives to reduce responses.

The network model implemented here explains both types of neurons based on

the properties of a single connection from the excitatory input cell to another

excitatory cell. Inhibitory rebound was not required for a duration-tuned network

in this model. Nevertheless, well timed inhibitory rebound can cause some

neurons to respond to what would otherwise be subthreshold inputs [49, 50].

Furthermore, inhibitory rebound may be able to increase signal to noise ratio.

Recent work [51] developed a computational model of band pass duration tuned

network. The model is based on the integrate-and-fire network and implemented

populations of cells in six different nuclei. The mechanism of tuning was

dependent upon either an offset evoked excitatory post-synaptic potential or

inhibitory rebound. This finding differs from the model shown here, which can

potentially function without either of these effects.

The most obvious disadvantage to this mechanism is that it is not inherently a

sweep detector. It is, however, used as a sweep detector in the brain [23, 24]; in

order to do this additional layers of processing are required. The key advantage of

this mechanism is that it can identify a sweep using only a single tone as input.

This makes it far more robust against certain types of damage, especially the loss

of sensitivity to certain ranges of sound frequency as may occur with age-related

hearing loss. This prediction is being tested in experimental models of cortical

processing with hearing loss.

Neural substrates of networks

The network arrangements of the mechanisms explored here are based on the

stimulus-response properties of these mechanisms rather than attempting to

replicate precisely any specific brain region. However, when guidance is available
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from published data, the circuits were designed to approximate biological reality.

This is particularly true for the sideband inhibition model.

The structure of sideband inhibition network was derived from multiple studies

of auditory cortical function. Local GABA-a receptor mediated inhibition shapes

FM rate and direction selectivity in the auditory cortex justifying implementation

of a cortex-based network with excitatory pyramidal cells and inhibitory

interneurons [18]. The direct excitatory input from the input layer to the output

layer mimics the thalamocortical excitatory input. The same inputs activate a

feed-forward di-synaptic inhibition. Similar network structure was previously

used in studies of thalamocortical processing [52, 53, 54]. In this network model

the frequency selectivity and arrayed representation mimics tonotopy in both

thalamus and cortex. The nature of connections result in both the inhibitory layer

and the output layer to have similar spectral selectivity. This mimics the

approximately balanced inhibitory and excitatory synaptic inputs that cortical

neurons exhibit [55]. Finally, the asymmetries in spectral and/or temporal

properties of sideband inhibition implemented here are also present in cortical

neurons [9, 20].

The biological substrates of facilitation and duration tuning networks are less

clear because few studies have explored the underlying synaptic circuits. Therefore

these circuits were primarily based on response properties. Combination sensitive

facilitation and duration tuning depend on local inhibitory activity in the IC.

Application of antagonists of GABA-a and/or glycine receptors can reduce

facilitation and duration tuning indicating that IC circuits are involved [26, 56].

Although we modeled facilitation as arising from two sub-threshold excitatory

inputs, it is possible that at least one of these inputs is an inhibitory rebound

excitation as has been shown in the IC [34]. It remains unknown if cortical

circuits provide additional sharpening or de novo shaping of duration tuning and

facilitation.

Broader implications

FM sweeps are analogous to visual motion in the sense that the stimulus moves

across the receptor epithelium. Mechanisms discovered in the auditory system,

and implemented here, are similar to those present to extract visual motion

direction and velocity information. For example, the cellular mechanism behind

facilitation type FM sweep detector is similar to motion detection in the visual

system [57]. The asymmetric sideband inhibition is similar to that present in the

superior colliculus [58]. The duration tuning model is similar to that found in the

visual cortex [59]. The developmental shaping of selectivity using STDP rules may

also be similar in the two systems ([12, 28]). These models therefore are broadly

applicable to examine synaptic mechanisms of sensory motion processing.
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Methods

All code used in these simulations is available at http://senselab.med.yale.edu/

ModelDB/ShowModel.asp?model5168407.

General definitions

The term ‘rate’ is used to describe the rate of frequency change in FM sweeps.

Sideband inhibition refers to frequencies that by themselves do not produce

action potentials, but can suppress spontaneous or excitatory tone-evoked

responses. Facilitation refers to non-linear combination sensitive responses

wherein, two tones in combination generate stronger responses than the sum of

the individual tone responses. The main elements of the networks used for each

model are outlined below and discussed in details in the Results section.

Sideband inhibition model

The model is based on experimental data on sideband inhibition as a mechanism

of FM rate and direction selectivity across species and brain regions

[9, 14, 18, 19, 20, 23, 24, 35]. The spectral and temporal interactions between the

excitatory and inhibitory components of the receptive field shape both direction

and rate selectivity of the auditory neurons. Furthermore, any asymmetries of the

inhibition on either side of the excitatory tuning curve will result in asymmetries

in spectrotemporal properties and a rate-dependent preference for direction of

stimuli moving across the frequency receptive field [9, 17, 19, 20, 35].

The excitatory component of the receptive field in the network model is a

tonotopically-arranged layer of frequency-selective cells (Fig. 1A). Five adjacent

cells in the input layer, each stimulated by a single frequency, stimulate a single

cell in the output layer. The number of input cells represented was chosen

arbitrarily and can be changed to represent sweep detectors with different tuning

curve bandwidth. The same input cells connect to a cell in the inhibitory middle

layer to simulate the approximately balanced inhibitory component of the

receptive field [29, 30, 60]. The inhibitory middle layer cell strongly inhibits the

output layer cell. Together these seven cells form the minimal unit of sweep

detection with a distinctive profile of responses to sweeps in a single range of

input frequencies. This profile of responses is dependent on the strength of the

connections between the input cells and the inhibitory cell.

Facilitation model

This model is based on experimental data on facilitation as a mechanism of FM

sweep direction and rate selectivity across species and brain regions

[21, 22, 34, 61]. Here the neuron’s spiking response to individual tones in the

receptive field is poor or absent. When, however, more than one synaptic input

arrives simultaneously, it may lead to depolarization that is sufficient to initiate

spiking response. This may occur when two tones are presented in an
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appropriately delayed sequence and activate two inputs with different synaptic

delays. Direction selectivity for upward sweeps will emerge if an ascending, but

not descending, tone sequence produces a necessary summation (also called

facilitation). Rate-dependent response will emerge if only specific delays between

tones produce facilitation.

In the implemented model, activity is stimulated in a tonotopically-arranged

layer of frequency selective cells (Fig. 4A). Two cells in the input layer send

subthreshold excitatory projections to a single output cell to model subthreshold

narrowband excitatory inputs. The response from the excitation of both synapses

combined is only sufficient to evoke a spiking response in the cell if they arrive

within a narrow time window. Each synapse has a delay. In order for the

excitation from both synapses to arrive within the time window the two input

layer cells must fire with a timing that offsets the difference in delay between the

synapses. In this model changing preferred sweep rate can be achieved by varying

synaptic delay.

Duration tuning model

This model is based on evidence for duration tuning as a mechanism of FM rate

selectivity across species and brain regions [23, 24]. The different models for

duration tuning have two elements in common: (1) a tone-onset driven early

inhibition and (2) a delayed excitation [25, 26]. The models differ in whether

coincidence of rebound from inhibition and excitation is necessary. We

implemented a model to study the conditions under which rebound from

inhibition may be necessary in shaping duration tuning. Activity is stimulated in a

tonotopically-arranged layer of frequency selective cells. Each cell responds to an

input with a continuous train of spikes for the duration of the input (Fig. 6A). An

input layer cell sends a stronger excitatory connection to an inhibitory middle

layer cell and a weaker excitatory connection to an excitatory middle layer cell.

This will result in the early onset inhibition and delayed excitation. The inhibitory

and excitatory middle layer cells send connections to the output cell. The output

cell only responds to tones of specific duration. The preferred tone duration of

this network is determined by the strength of excitation from the middle layer cell.

fa(Vn,In)~

a(1{Vn){1zIn, Vnƒ0

azI, 0vVnvazIn and Vn{1ƒ0

{1, azInƒVn or Vn{1w0

8>><
>>:

Individual neuron models

To allow for a detailed analysis of oscillatory dynamics in large-scale network

simulations, we used a reduced neuron model described by difference equations

(map) [62, 63, 64], which has a number of distinct numerical advantages: the
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common problem of selecting the right integration scheme is avoided since the

model is already written in the form needed for computer simulations. The model

is described by the following equations: Vnz1~fa(Vn,Inzbn)

Inz1~In{m(Vnz1)zmszmsn, where Vn is the membrane voltage, In is a slow

dynamical variable describing the effects of slow conductances, and n is a discrete

time step (,0.5 msec). Slow temporal evolution of In was achieved by using small

values of the parameter mvv1. Input variables bn and sn were used to incorporate

external current Iext
n (e.g., synaptic input):bn~beIext

n , sn~seIext
n . The nonlinearity

fa(V ,I) was designed in the form of a piece-wise continuous function. To convert

the dimensionless ‘‘membrane potential’’ V to the physiological membrane

potential Vph, the following equation was applied: Vph5V*50215 [mV].

This model, despite its intrinsic low dimensionality, produces a rich repertoire

of dynamics and is able to mimic the dynamics of Hodgkin-Huxley type neurons

both at the single cell level and in the context of network dynamics(Rulkov,

Timofeev et al. 2004; Bazhenov, Rulkov et al. 2005). Furthermore, these models

are capable of matching response properties of biological neurons for more

natural dynamic input [63] The network simulations conducted with this reduced

model are several thousand times faster than those based on the Hodgkin-Huxley

equations with a minimal set of ionic currents required to reproduce similar firing

patterns of different cell types. In our simulations, the model parameters were set

at a~3:65, s~0:06, m~0:0005, be~0:133, se~1. The model parameter s sets

the resting potential of the neuron and, therefore, its state with respect to spiking

threshold.

To model synaptic interconnections, we used conventional first order kinetic

models of synaptic conductances rewritten in the form of difference equations:

gsyn
(nz1)~cgsyn

n z
gsyn, spikepre,

0, otherwise,

�

and the synaptic current computed as:

Isyn
n ~-gsyn

n (Vpost
n -Vrp)

where gsyn is the strength of synaptic coupling, and indices pre and post stand for

the presynaptic and postsynaptic variables, respectively. The first condition,

‘‘spikepre’’, is satisfied when presynaptic spikes are generated. Parameter c controls

the relaxation rate of synaptic conductance after a presynaptic spike is received (0

ƒ c ,1). Parameter Vrp defines the reversal potential and, therefore, the type of

synapse: excitatory or inhibitory. To model a synaptic delay, the implementation

of condition ‘‘spikepre’’ may be delayed from the moment of the presynaptic spike

generation by the number of iterations corresponding to the delay time. We used

a range of 0.5–20 msec delays.
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STDP modeling

STDP-based learning was implemented in the sideband inhibition model because

this mechanism has received the most experimental support. Changes in sideband

inhibition underlie developmental plasticity of FM sweep direction selectivity

[12, 37]. When STDP-based learning was active, connections from the input layer

to the middle inhibitory layer were plastic. To maintain balance of synaptic

weights, the sum of all incoming connections to a given cell was held constant

such that when one connection increases in strength all others correspondingly

weaken. Plasticity in our model is based on a STDP paradigm [65]. A spike in a

post-synaptic cell which directly follows a spike in pre-synaptic cell creates a ‘‘pre

before post’’ event. Additional post-synaptic spikes do not create additional pre

before post STDP events. Likewise a spike in a pre-synaptic cell which directly

follows a spike in post-synaptic cell creates a ‘‘post before pre’’ event. Additional

pre-synaptic spikes do not create additional post before pre STDP events.

The value of an STDP event was calculated using the following equation

[66, 67]:

DW~k � S � e

{

tpre spike{tpost spike

��� ���
Tc

0
@

1
A

Where k is equal to 20.025 in the case of a post before pre event and 0.025 in the

case of a pre before post event. Variable S is the strength of the connection. Tc is the

time constant and is equal to 10 ms.
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